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*~ ~~~ Abstract

Sampling theorem concepts are applied to certain classes of linear
shift variant systems. Various sampling theorem characterizations

C..) 
arise from different bandlimiting assumptions on the system input
and/or impulse response. These characterizations are also expressed
in discrete form and in all cases considered , reduce to an identical
computational form which can be evaluated with a generalized Z trans-
form treatment. The Fourier duals of the sampling theorems, wherein
the system is characterized by its frequency rather than impul8e re-
sponse, are also presented.

1. INTRODUCTION In section 2, certain preliminary notational
Past application of sampling theorem con- and computational conventions are given
cepts to linear shift variant systems has which are necessary in the development of
been to evaluate the system impulse re- the sampling theorems. Sections 3 through

sponse rather than to characterize the in- 5 present three different sampling theorems
put—output relationship (1), although ade- corresponding to various bandlimiting assuin-
quate sampling rates have been discussed ptions on the system input and/or impulse
briefly (2). In this paper , on the other response. A direct consequence of these
hand , we present numerous conditions under sampling theorems are infinite matrix char—
which the superposition integral character— acterizations of the system process which ,
ization of the input—output relation for except for sampling rates , are identical
linear shif t  variant systems can be expres- for all three sampling theorems. The use
sed in sampling theorem type expansions. of the Z transform in treating these di.—
Certain ramifications of these treatments, crete characterizations is briefly discussed
such as digital characterization of the in section 7. In section 8 the Fourier duals
system process without loss of information of the sampling theorems are pr.semted wh.re-
and generalized a transform treatment of in sampling is performed in the fr.quemcy
discrete superposition relations, are also dom ain. Section 9 contains some concluding
discussed. remarks .
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The work of this paper was motivated by in- (6) . For example , we can directly express
vestigation of space-variant systems en- the output spectrum by
countered in coherent optical processing
(3). Substantial new material, however, is Y(f) — F

~~ty (t ) J
.(3)presented here. We note that causality is F F t (h (t ;  T)U (T)

not a constraint in such spatial systems.
where the Fourier operators are defined byFor this reason, the sampling theorems here

are presented for the more general case Ft [s( t ; T) J 
~ ~~ 

s(t; r)exp (-j2nft )d t (4)
where causality is not -a constraint. Al-
though a causal signal (zero for negative
time) can never be rigorously bandlimited
( 4 ) ,  familiar time—bandwidth product approx— F~

(s(t; T)
~~’ J s t ; r m c p —i2ivt dr (5)

imations can be applied if approxiate (5) .
Note that for the shift invariant case thatThe same is true for the system impulse re-

sponse with respect to its first variable. h l t ; r )  -. h(t). Equation 3 then takes on the

There are many causal signals and systems, familiar product form Y(f) — Ftth~
t))FtEu (t)I.

however, which can be considered essential—
A transform of the impulse response which1y bandlimited. Even the conce~~ of a
will be of interest is the variation ~~~~~~~~~~~bandliinited signal, at best. can only be

considered as an approximation to real world !~fl~!! defined as

phenomena (5) .
— F

~~
(h( t , r ) )  (6)

For clarity of presentation , attention will

be restricted to one dimension. Generaliza- The support of the variation spectrum is a
tion to multidimensional systems is straight—measure of the manner in which the impulse
forward . response changes shape with respect to i.

We consider here the low—pass case for which
2. PRELIMINARIES H1(t;v) i. identically zero outside the in-.

terval ~v( < ~~~ Such systems will be re-
The response, y(t), of a linear system to 

ferred to as variation limited. The quan- 9
an input u(t), can be expressed by the sup- tity 2W,~, is appropriately termed the varia-
erposition integral: 

tion bandwidth.
- 

y(t) S ~u(t)J (1) Note that a shift invariant system has a
variation bandwidth of zero and is thus truly
invariant.

where S(s) is the system operator and the
system impulse response is formally defined 

3. A SAMPLING THEOREM FOR VARIATION
as

LIMITED SYSTEMS

8 1 6 ( t — r ) )  (2)
We now will develop a sampling theorem appli- ~~°‘~ 0
cable to Variation limited systems with band—where 6( t )  denotes the Dir ac delta. (For limited inputs. For the bandlimit.d input, 

______a causal system , h ( t — r ; f )  is zero for t c r . ) we again consider th . low—pa ss case where
This particular choice of impulse response u (t) has bandwidth 2W

~ . Consid er, then ,
notation has certain computational advantag.s~~, term h(t :r)u(r) which is the arq~~ent of
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the Fourier operator in Eq. 3. Multip liCa- of shif t  invariant systemn s each of which
tion in the t domain corresponds to convolu- corresponds to a sample impulse response.

tion in the v domain. As such, if u ( t )  has The switching mechanism required to feed

bandwidth 2Wu and h (t;-r) has a variation 
each filter its corresponding sample value

bandwidth of 2W
~
, then their product will is representative of the shift variance of

have a bandwidth 2W, equal to the sum of the overall system. Note that Eq.  11 is

the component bandwidths: not optimal in the sense of uti l izing mini-
mum sampling rates. That is, u ( r )  only re-

2W5 — 2W
~ 

+ 2Wu (7) quires a sampling rate of 2Wu and h (t r r ) a
sampling rate of 2W~ in r .  Both are here

The product h ( t ; T ) u ( r )  can thus be expanded being sampled at a rate 2W 5. The authors

in a uniformaly converging (7) Whittaker— have shown however, that the sampling ex-

Shannon sampling theorem (8) in t :  pansion utilizing the minimum allowable

sampling rates is computationally less

h(t;r)u(r) = )
~ 
h (t;Tn)u(Tn) attractive (3).

n
sinc 2W5(’r—r ) (8)n 4. AN ALTERNATE SAMPLING THEOREM

where t — n/2W5 and sinc x t~ sinlrx/wx.

Substituting into Eq. 3 and simplifying In the previous section, h (t;r) was assumed

gives to be bandlimited in r. Note that this

restriction does not necessarily assure that

1 ~ • , h(t-i;t) is also bandlimited in i. As such,Y ( f )  = 
~~~~~

— / Ht(f~
’Ln)U~

tn)
S fl we can derive an alternate sampling theorem

x exp(—~2itf r~ )G(~~ —) 
(9) for the case where Ft

(h(t_x;r)] is zero out—

S side of the interval lv i < Wh. If our input

where our transfer function is defined by has bandwidth 2Wu~ 
then the product h (t-u-t )

u ( r )  has bandwidth 2Wd = 2W + 2Wh in i and

H
~
(f;ii

~ 
Ft(h(t;r)i (10) can be expressed in the sampling theorem ex-

pansion:

and G(f) F (sine ti is the gate function.t h (t—r;T) ~h (t— r ;t )u(~ )sinc2Wd
(t_ r

Inverse Fourier transforming Eq. 9 gives n n n n n
(12)

y (t) — 
~ 

h (t_ ~t n ;T n ) u ( T n )* Binc 2W, t where , here, — n/2Wd. Substituting into
n 

(11) the superposition integral (Eq . U gives

where * denotes the convolution operation.

We interpret Eq. 11 as follows: For band— y(t) ~ 
h(t_T

n ; r n)u(tn)j sinc2Wd (r—r fl )dT

limited inputs, the output to a variation’

limited system can be computed by 1) samp- — ~~~~~
._ 

~ h (t—t~ :T~ )u(T~ ) (13)
ling the input, 2) multiplying each input d n

sample by its corresponding sample impulse Our expansion here i~ similar to that in Eq.
response, 3) aunining the results, 4) pass- 11 except for the sampling rate and the fact
ing the sum through a suitable low-pass that no low—pass filtering is required . ‘ 

-

filter. As is shown in Figure 1, we can Note also , due to our bandlimiting constraints,
int.rpret this result as the representation the output in Eq. 13 is bandlimited with band—
of a variation limited system by a bank of width
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5. A THIRD SAMPLING THEOREM to give the corresponding system output.

The sampling theorems thus far discussed 6. DISCRETE CHARACTERIZATION
require sampling in the r or input domain.

An alternate sampling theorem which utilizes Inspection of the three sampling theorems
output sampling occurs when h(t;-t) is band— thus far presented reveals that the corres—
limited in t with (lowpass) bandwidth of, ponding system output is bandlimited and
say , 2W~. (Note that this condition is thus can also be expressed in a sampling
equivalent to h ( t -i ;r )  being bandlimited in theorem expansion. We now investigate
t.) Such a condition holds when the system direct computation of the required output
response to an impulse input is bandlimit- sample values in terms of the sampled input
.d irrespective of the location of the in- and impulse response. The resulting cam-
put delta function. Under this bandlimited putational forms, in the three cases consid-
assumption, we can invnediately express the ered, are identical.
impulse response in the sampling theorem
expansion: (1) Consider first, the variation limited

system with bandlimited input. From Eq. 11,
h(t;r) — 

~ 
h(tn;’t)sinc2Wt

(t_t
n) (14) we define the low—passed system impulse re—

sponse as
where t~ — n/2Wt . Substituting into Eq. 3
followed by simplification, leaves h (t—t ;i ) 

~ 
2Wsh

(t_T
n;Tn)*sinc2Wst (17)

Y(f) — 
~~~~~

— I ~ T (
~~~

(t
fl

; T ) h i ( 1 )1  Equation 11 can now be written
t n v—f

exp(—i2wft~)G(~~—) 
(15) y(t) — 

~~~~~
— ) h ( t_ r~~;r ~~) u (7~ ) (18)

Inverse transforming yields: It follows iimnediately that

Y(t) 
~ 
h(t

~
;t_t

~
)u (t_t

~
)*sjnc2Wtt Y(tm) — 

~~~ ~~
h(tm

_t
n;Tn)u(tn) (19)

(16)
From Eq. 9, y(t) has a bandwidth of 2W5.

As before we have reduced the system char- Thus , we require that tm = m/2W 5 . Note
acterization to a s~~~ation of convolutions, that Eq. 19 can be straightforwardly exprel-
In this case, however , we do not have to sed in an infinite matrix form .
place any bandl imiting constraints on our
input. Suppose we now make the additional constraint

that h ( t , t )  is bandlimited in t with band-
We can interpret Eq. 16 as •hown in Figure width 2Wt. If N5 > then the low-passed
2. Our input is fed into a tapped delay impulse resp onse in Eq. 17 is the same as
14ne which serves as the shift variance of our actual impulse response:
the overall system. The outputs at various
points along the delay line are then multi— h ( t  -i

1~; r ~~) — h( t
~ Tn ; T n ) p W 5 > W~ (20)

plied by the app ropr iat. samp le response ..
All these products are then -suamed and pa. - Then, Eq. 19 becomes
s.d through an appropriate low pass filter

— ~~~~~~ ____________________ — - -
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and 25) reveals cemputationally identical
y(t

~
) 

~~~~
— 

~ 
h (tm

_l
n;ln)u (ln); Ws>Wt forms. Our assumptions is all cases are (1)

(21) u ( r )  is bandlimited , (2) either h (t;i) or

where = — n/2W~. 
h (t-r;t) is bandijinited in t and, for the

(2) Consider next the sampling theorem in first [Eq. 21) and third [Eq . 25) cases,

section IV where h(t—r ;r) is bandlimited in that (3) h(t;i) [and thus h(t—r;r)) is band—

i. Since the output has bandwidth 2Wd, ~~ 
limited in t. We can combine the three dis-

follows immediately from Eq. 13 that the crete matrix type relationships into a

desired output sample values are given by single expression:

1 
~ h(t —T ;i )u(r ) (22) Y(tm) ~~~~

— ~ h ( t  — i ;i )u(i ) (26)m n  n nY(t
~
) — 

~~~ 
m n

wherewhere, now t~ = — n/2Wa.
(3) Lastly, consider the sampling theorem

W = m3 n [Wexpansion in Eq. 16 where the output has d’ max (Wt, W,)) (27)

bandwidth 2Wt. The corresponding mth out-

put sample here is given by: and t~ = T~~ = n/2W. We again stress, that

in all cases considered , sampling of both
Y(tm) = ~ [h ( t ~~; t ) u ( t ) *sinc 2Wt t ) I the input and impulse response is performed

t—t — tm n at a rate above the required minimum allow—
(23) able sampling rate.

where, now, tm — m/2W
~
.

A more coinputationally attractive form of 7, Z TRANSFORM TREATMENT
Eq. 23 occurs when, in addition to being
bandlimited ~~ t, the System is variation For shift invariant systems, Eq. 26 takes
limited and the input is bandlimited such on the form of a discrete convolution which
that 2W, < 2Wt. In this case Eq. 15 be— is traditionally treated with the Z trans-
comes form (8). We will now show that due to our

choice of impulse response notation, such
Y(f) — i~~~

-
~ ~ 

Ft(h(t ;t)u(t)] treatment can be generalized to the shift
t n variant case.

x e x p(_j 2 z f t n ) G (
~~~

_ ) G (
~~~

_)

- (24 )  We define two Z transforms of a two variable
= 

~ 
Ft[h(tn;t)u(t) J discrete sequence s(m ,n) by

e xp (_j 2 f l f t~ ) ;  W5 < W~ Z~~I s (m ,n ) J  — is
_n 

s(m,n) (~ 8)n

Inverse transforming and evaluating at t— and
t,5 gives - -

Zm (s(m ,n)) — ~ z~~ s (in ,n) (29 )
1y(t~) — Y h(tm_ln;ln)u(Tn); W1< W~ In

(25) Note the similarity of the spirit of these

where t~ — T~ • fl/2W t . definitions to the Fourier transform opar-

Inspection of the results of the three dis— ations in Eqs. 4 and 5.

crete characterizations above (Eqs . 21, 22

769
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Denote the Z transform of y(~~ ) by Y(z). (1) Consider f i rs t  the Fourier dual of the
From Eq. 26 , it follows that sampling theorem for variation limited

systems. Here , we require that F~~ (k(t;v))
Y (z) — Z~~I y(t ~ ) )  be identically zero outside the interval

- T
~
. Also U(v) must be bandlimited.”

— 
~~ I (

~ Z~~h(tm
_ •1n;1n))U(Tn) That is, our input, u(r), must be nonzero

11 IS only over the interval I T I  < Tu • The re-
— I Z~~

[h( t
~

;T
~

) ) z
~~

’u ( T ) (30) sulting sampling theorem, then, is simply
n the Fourier dual of Eq. 11:

— Z Z [ h ( t ; r ) u ( r ) )
y(t) — 

~ 
k(t_cvn;vn)U(vn)*sinc (2Tst/c)

This is the generalized Z transform treat— (34)
ment of a discrete shift  variant process . where 2T5 = 2T~ + and V~ — n/2T,.
Note, as was in the case with Eq. 3 the

- result reduces to the more familiar product (2) Consider next the Fourier dual of the
form for the shift invariant case. sampling theorem in section 4. Here , we

require F~~~( k ( t — c v ; v )j  is zero for l i i  >

H 8. FOURIER DUAL SAMPLING THEOREMS and , again , that u ( r )  is zero for I i i  > T
~ .

The Fourier dual of the sampling theorem
The sampling theorems thus far  presented in Eq. 13 follows inmiediately as
can also be applied in a Fourier dual sense
to the frequency domain. The corresponding y ( t )  — 

~~~~
— 

~ 
k(t

~
CVn;Vn)U(Vn)

constraints here , take on a physically dif-  d n

ferent meaning and thus widen the class of where 2Td — 
~~h + 2T

~ and Vn — n/2T6.
systems which can be characterized in samp-
ling theorem type expansions. (3 )  Lastly , we inspect the Fourier dual of

the sampling theorem presented in section 5.
To change the computational form of the Our constraint in this case is that k(t , v)
superposition integral , we apply Parseval’s is bandlimited in t with bandwidth 2Wt.
theorem to Eq. 1: Note that this constraint is the same as re-

quiring h( t ; t ) to be bandlimited in t.
y ( t )  - J k (t— cv 4v )U (v ) dv  (31) The resulting sampling theorem expansion

corr.sponding to Eq. 16 is
where U (v) — F

~~I u ( t ) )  and 
t—t

• y t t)  — ~ k (t ~ ; —
~~
-

~~~ 
) DC - 

~ ~) *sj nc2W t
klt—cv ,v)  — J” h ( t — T ; T ) ex p (j Z w v r ) d t  (32) (36)

where tn — n/2W~.The kernel, k ( ’ , •) is recognised as the
system frequency response: The three sampling theorems presented here

can obviously be placed in discrete form as
k(t— cv,v) — Stexp (~ 2i i v r ) )  (33) was done in section 6. For brevity , these

discrete cases will not be presented but
The consta t c is included simply to main- can be st r aightfor ~ ard ly derived uti lising
ta m dimensional consistancy between the previous notions.
tim. variable t and frequency variable v.

_ _ _  
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9. CONCLUSIONS (2) T. S. Huang , “Digital Computer Analysis

of Linear Shift—Variant Systems,” Proc.

We have presented several sampling theorems NASA/EPC Seminar 83-87, (Dec. 1969).
applicable to various classes of shift var-

iant systems envolving certain bandlimit— (3) R. .7. Marks II, .7. F. Walkup and H. 0.
ing constraints on the system impulse re- Hagler, “A Sampling Theorem for Space-
sponse and/or input. The system output, Variant Systems,” .7. Opt. Soc. Am. 66,
in certain instances, is bandlimited and 918 (1976).
the computational form required to evaluate

the values for its sampling theorem ex- (4) G. C. Temes , V. Barcilon and F. C.
* pansion was shown to result in an inf ini te  Marshall III , “The Optimization of

matrix relation. The computational forms Bandlimited Systems,” Proc. IEEE 61,
in each of the three cases considered are 196 (1973).

identical differing only in sampling rate.

The matrix type relationship was shown to (5) 0. Slepian, “On Bandwidth ,” Proc. IEEE
be able to be evaluated in a generalized Z 64, 292 (1976).
transform treatment. Fourier duals of the
sampling theorem, where sampling is largely (6) R. J. Marks II, 3. F. Walkup and M. 0.
performed in the frequency domain , were al- Hagler , “On Line-Spread Function Nota-
so presented. Possible areas of applica— tion,” Appl. Opt. 15, 289 (1976).
tion of the sampling theorems include sig-

nal and image processing as well as shift (7) N. C. Gallagher Jr. and G. L. Wise, “A
variant system synthesis with a number of Representation for Bandlimited Func-
shift invariant systems and/or tapped de— tions , ’ Proc. IEEE 63 , 1624 (1975).
lay lines. Investigation into implementa-
tion of the sampling theorems with coherent (8) R. N. Bracewell , The Fourier Transform
optical processors is also presently under and Its Applications, (McGraw-Hill ,
way (9). New York , 1965).
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Figure 1: An implementation of the sampling theorem presented in
section 3. Sample values of the input are fed into a
bank of shift  invariant f i l ters each of which corresponds
to a sample of the parent shift variant impulse response.

0 DELAY

~~~~~~; t—ta -,) 

I

~~~~
)**1
~~~

j;1_,u) 
~~~~(:: :,—t..s )

- 

______ 

yft)

• FLIER

Figure 2: An implementation of the sampling theorem presented in
section 5. Delayed versions of the input are multiplied
by corresponding sample impulse resp onses , summed , and
passed through a low pees fi l ter to give the output of the
parent shift  variant system.
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